Ranks on the Baire Class Ξ Functions
نویسندگان
چکیده
In 1990 Kechris and Louveau developed the theory of three very natural ranks on the Baire class 1 functions. A rank is a function assigning countable ordinals to certain objects, typically measuring their complexity. We extend this theory to the case of Baire class ξ functions, and generalize most of the results from the Baire class 1 case. We also show that their assumption of the compactness of the underlying space can be eliminated. As an application, we solve a problem concerning the so called solvability cardinals of systems of difference equations, arising from the theory of geometric decompositions. We also show that certain other very natural generalizations of the ranks of Kechris and Louveau surprisingly turn out to be bounded in ω1. Finally, we prove a general result showing that all ranks satisfying some natural properties coincide for bounded functions.
منابع مشابه
Characterization of Order Types of Pointwise Linearly Ordered Families of Baire Class 1 Functions
In the 1970s M. Laczkovich posed the following problem: Let B1(X) denote the set of Baire class 1 functions defined on a Polish space X equipped with the pointwise ordering. Characterize the order types of the linearly ordered subsets of B1(X). The main result of the present paper is a complete solution to this problem. We prove that a linear order is isomorphic to a linearly ordered family of ...
متن کاملBaire reductions and good Borel reducibilities
In [8] we have considered a wide class of “well-behaved” reducibilities for sets of reals. In this paper we continue with the study of Borel reducibilities by proving a dichotomy theorem for the degree-structures induced by good Borel reducibilities. This extends and improves the results of [8] allowing to deal with a larger class of notions of reduction (including, among others, the Baire clas...
متن کاملTransfinite Sequences of Continuous and Baire 1 Functions on Separable Metric Spaces
We investigate the existence of well-ordered sequences of Baire 1 functions on separable metric spaces. Any set F of real valued functions defined on an arbitrary set X is partially ordered by the pointwise order, that is f ≤ g iff f(x) ≤ g(x) for all x ∈ X. In other words put f < g iff f(x) ≤ g(x) for all x ∈ X and f(x) 6= g(x) for at least one x ∈ X. Our aim will be to investigate the possibl...
متن کاملBorel chromatic number of closed graphs
We construct, for each countable ordinal ξ, a closed graph with Borel chromatic number two and Baire class ξ chromatic number א0. 2010 Mathematics Subject Classification. Primary: 03E15, Secondary: 54H05
متن کاملFunctions Whose Composition with Baire Class One Functions Are Baire Class One
We study the functions whose composition with Baire class one functions are Baire class one functions. We first prove some characterizations of such functions, then investigate a subclass of such functions which are defined in a natural way.
متن کامل